

AGRICULTURAL, FOOD & NUTRITIONAL SCIENCE

Value-added processing and applications of oat proteins

Lingyun Chen (PhD)

Canada Research Chair

Professor Department of Agricultural Food and Nutritional Science University of Alberta lingyun.chen@ualberta.ca

Daily worldwide demand for plant-based and animal proteins (in g/person/day)

Annual worldwide demand for plant-based and animal proteins (in millions of tonnes/year)

2010-2030 plant protein will grow by 43%

Health awareness

Sustainability

GLOBAL PLANT PROTEIN MARKET BY PRODUCT

_

USD \$8.35 billion in 2016

USD \$14.22 billion in 2022

Health claim

- "Diets low in saturated fat and cholesterol that include 25g of soy protein a day may reduce the risk of heart disease" (US FDA, 1999).
- American Heart Association (AHA, 2000) endorsed the use of soy foods for people with elevated cholesterol
- Protein claims: good source of protein, high in protein

Food fortified with protein U.S. Nutrient Content Claims (21CFR 101.54)

A food or beverage product may claim the following:

- "Added Protein"
- "Extra Protein"
- "Fortified with Protein"
- "Enriched in Protein"
- "More Protein"

A food or beverage product may claim the following:

- "Good Source of Protein"
- "Contains Protein"
- "Provides Protein"

A food or beverage product may claim the following:

- "Excellent Source" of Protein"
- "Rich Source of Protein"
- "High Source of Protein"

...if it contains more-than 10% of ...if it contains more-than the protein DRV value than the 10% of the DRV for reference serving size of that protein (> 5g) per food (RACC: Reference amounts reference serving size customarily consumed per eating (RACC). occasion) normally contains. ...if it contains more-than 20 of the DRV for protein (> 10g) per reference serving size (RACC)

Plant protein product samples

Food and Beverages

Plant protein product samples

Plant protein product samples

Animal feed

Dietary supplements

- Availability (3 Million tonnes/year in Canada)
- Protein content (13-25%)- protein% comparable to pea for some variety
- Globulin protein as major protein component with good solubility and functional properties
- High quality (highest Lys) among cereal proteins, nearly equivalent in quality to soy protein (WHO)
- Tolerated by the majority of people suffering from celiac disease
- Neutral flavor and taste

Oat protein functional properties

Egg and Dairy Protein Functionality

Structure Strength Texture/mouthfeel Coloration Emulsification Gelation Film-forming Foaming

Water control Viscosity Flavor Opacity / turbidity Particle suspension

Adhesion Agglomeration

Oat protein Functionality

Structure Strength Texture /mouthfeel Emulsification Gelation Film-forming Foaming

Water control Viscosity Opacity / turbidity Particle suspension Agglomeration

Protein gels in foods

Fat substitutes

Meat analogues

Meat and fish binders

Ē

Oat protein heat induced gels

pH 8

OPI solution (15%, w/v)

115°C, 15min

Oat protein gel texture

Soy: 2.1 – 2.6 N at neutral pH Egg white: 8.70 N at pH 9

Oat protein gel water-holding capacity

Ē

Soy protein (82.2%)

Whey protein (~88%)

Oat protein heat induced gels

Oat gel network

Mechanical strength

Water-holding

Transparent/opage

Soy gel network

Oats protein networks

1000050

Oat protein-polysaccharide complex gel texture

		pН	2.5	pł	I 5	pH	I 7	
13.86	Compress	sive stress (kPa)		St. Sansal		Sec. Sec.	
	OPI	1.53	±0.27	10.19	±1.32	11.29	±3.49	
	OPI-I	1.47	±0.11	9.63	±1.03	13.93	±1.95	
0.1%	OPI-I	2.07	±0.31	10.92	±2.12	(14.41)	±1.39	
0.5%	OPI-I	2.19	±0.38	14.16	± 2.85	22.98	±1.12	- C
	Cohesive	ness						Soy protein/gellan
	OPI	0.41	±0.03	0.67	±0.01	0.55	±0.04	gum (~12.5 kPa)
	OPI-I	0.47	±0.06	0.63	±0.07	0.56	±0.05	
	OPI-I	0.39	±0.04	0.70	±0.02	0.55	±0.06	
5. (1997) <u>-</u>	OPI-I	0.26	±0.03	0.68	±0.05	0.55	±0.08	Egg white: 22-32 kPa
	Springine	ess (mm)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			and a start of the		
	OPI	130.2	±5.37	211.1	±7.74	163.0	±15.4	
	OPI-I	159.8	±21.4	193.1	±6.14	228.2	±20.4	
	OPI-I	143.7	±21.1	208.1	±4.76	220.7	±9.85	
	OPI-I	197.8	±17.6	208.8	±12.7	217.8	±17.4	
	Gummine	ess (N)						
	OPI	0.08	±0.01	0.90	±0.09	0.73	±0.12	
	OPI-I	0.09	±0.02	0.80	±0.10	0.90	±0.14	
	OPI-I	0.10	±0.02	0.94	±0.15	1.03	±0.10	
in section	OPI-I	0.08	±0.01	1.16	±0.13	1.68	±0.18	

Oat protein-polysaccharide binary gel microstructure

Gel formation mechanism study

Confocal microscopic photograms of oat protein gels with 0.5% inulin as a function of increasing temperature, scale bar 10 μm

- Increased interactions among protein by phase separation;
- Inulin performs a filling effect in the protein network;
- Localized interactions such as hydrogen and hydrophobic bonds may take place between protein and inulin at the phase borders.

Food application development of heat induced gels

Provide texture

Reduce oil uptake during frying

Veggie burger

Food application development of heat induced gels

Meat binder

Hardness 9.2N Hardness 19.8N

Cross section of the cooked pork meat ball without (left) and with (right) oat protein gelling ingredient

Oat protein cold-gelation

Food application development of cold gels

Food application development of cold gels

Protection of probiotics and enzyme

Fig.3-5. (a) Survival ratio of probiotics in SGF. (b) Release of probiotics in SIF, (c) Activity of enzymes in SGF.

- Protecting enzymes and probiotics in harsh stomach condition;
- Controlled release of bioactive compounds.

Protein emulsions in foods

Salade dressing

Creamer

Veggie mayonnaise

Ē

Non- dairy coffee creamer

and water thus allowing the two to mix to form emulsions

Oat protein oil-binding and emulsifying property

Water (WHC) and oil binding (OHC) capacity of oat protein

Emulsion stability after centrifugation (ECS) and thermal treatment (ETS) of oat proteins

Protein emulsion properties in coffee

Proteins	Emulsifying properties	Emulsion stability in coffee
pea protein	Good	Feathering, flocculation happen after several minutes
Faba bean protein	Good	stability for >2h
oat protein	Good	Feathering, flocculation happen after several minutes, after shaking no more flocculation appear
Canola protein fraction1	poor, phase separation happened in 5 minutes	stability for >2h
Canola protein fraction2	Good	Feathering, flocculation happen immediately

Protein emulsion properties in coffee

Formula	Feathering*	Whitening**
Faba bean protein: oil=1:1	No feathering	+
Faba bean protein: oil=1:2	No feathering	++
Faba bean protein: oil=1:3	Feathering after few minute	+++
Protein (FB:oat=1:1): oil = 1:1	Feathering	
Protein (FB:oat=8:1): oil = 1:1	No feathering	+++ P P P P P P P P P P P P P P P P P P
Oat protein :oil =1:2	No feathering with 0.55%	

Spray-dried coffee creamer

Treatments and proteins	Smell*	Colour**
Faba bean proteins from		
machine dehulled Faba bean	XX	brown
Industrial deflavored Faba bean protein	x	light brown
Industrial deflavored pea protein	XX	yellow
oat protein	ОК	light brown
Canola protein fraction	хх	brick red

Oat protein based coffee creamer

Oat protein based coffee creamer

Oat protein based coffee creamer

•Globular protein as major protein component (good solubility) and high quality, nearly equivalent in quality to soy protein (WHO)

•High dietary fiber

• High protein + high beta-glucan

•Improve cost-effectiveness of the processing

OT3066	0	113	20.31	
OT3066	0	209	19.70	
OT3066	0	302	20.82	
OT3066	0	417	20.01	
OT3066	150	116	20.76	
OT3066	150	211	20.73	
OT3066	150	307	20.63	
OT3066	150	412	20.92	
Morrison	0	105	21.83	
Morrison	0	416	20.08	
Morrison	0	219	21.37	
Morrison	0	311	21.45	Significantly different between
Morrison	150	319	22.69	fertilizer treatment (p<0.05)
Morrison	150	403	22.33	(r)
Morrison	150	108	23.20	
Morrison	150	202	22.73	

•Protein + beta-glucan concentration

•Improve cost-effectiveness of the processing

SA	MPLE	Starch %	Proteins %	β-glucan %	Moisture %	Other carbohydrates and fat %
Oat flour		60.71 ± 2.22	13.70 ± 0.75	3.35 ± 0.62	5.61 ± 0.22	16.64
IETHOD sing sieve)	Oat flour with reduced amount of starch	39.69 ± 2.13	14.77 ± 0.75	9.40 ± 0.41	6.31 ± 0.12	29.84
DRY N (with us	Starch from oat flour	69.38 ± 3.09	7.46 ± 0.44	1.29 ± 0.05	6.68 ± 0.77	15.19
(THOD stment)	Oat flour with reduced amount of starch	7.38 ± 1.03	55.19 ± 0.88	8.88 ± 0.17	0.87 ± 0.04	27.68
WET ME (pH adjus	Starch from oat flour	77.88 ± 3.20	4.01 ± 0.14	2.24 ± 0.08	0.97 ± 0.02	14.90
& WET THOD	Oat flour with reduced amount of starch	5.29 ± 0.36	52.24 ± 0.61	13.89 ± 0.94	0.96 ± 0.05	27.62

after 18 daysafter 22 daysStorage stability of oat flour with reduced amount of starch

Other opportunities

Extrusion processing (left), and dry (middle) and cooked (right) oat noodles

Oat protein value-added opportunities

Plant Protein Research

Mission

To create and develop competitive advantages for western Canadian crop resources in value-added product development with an emphasis on plant proteins

Research & Development Directions

Feedstock	 Characterize and understand feedstock attributes (different crops and varieties) Aligning crop component quality with product attributes demanded by market, identify and developing specialty crops for food and non-food applications
Crop & By- Product Processing	 Develop cost-effective processing to fractionate crop components. Advance technology to produce pure ingredients, extracts, and isolates from a wide range of Alberta based crops. Develop processing and utilization of by-product streams from primary processing and utilizing other supply sources: Distillers Grains, Brewing ingredients, barley leaves, straw, seed coats, hulls, etc.
Property Testing	 Evaluate unique properties and competitive advantages of crop extracts, isolates, and pure ingredients to predict their potential applications
Value-Added Applications	 Advancing technologies that convert crop components into value-added products for utilization within food, personal care, bioplastic, biomaterials, and other industrial applications Develop and customize the innovative technologies to meet specific industry requirements
Services	 Providing industry with access to expertise, unique analytical services, and problem solving capabilities

Collaboration and/or Investment

Ongoing access to specialized expertise and skill sets

Direct access to innovative and cutting edge research, and new intellectual property

Direct access to state-of-the-art equipment and facilities

Connections with ingredient suppliers and end users

AGRICULTURAL, FOOD & NUTRITIONAL SCIENCE FACULTY OF AGRICULTURAL, LIFE & ENVIRONMENTAL SCIENCES

Acknowledgement

Acknowledgement

Federal Government:

Canada Research Chair Program Natural Sciences and Engineering Research Council of Canada (NSERC)

Provincial Government:

Alberta Crop Industry Development Fund.Alberta Innovates Bio Solutions

Industry partners Prairie Oat Growers Association

