AAFC Oat Varieties: What's New, on its Way, and Good for Alberta Producers

BRDC Research Scientist - Sustainable Oat Breeding and Genomics

Dr. Kirby Nilsen January 24, 2022

Use and/or distribution of these slides is prohibited unless approval by the author is granted

Short Biography

Kirby Nilsen, PhD

Oat research plots, Brandon

•Research Scientist – Sustainable Oat Breeding and Genomics with AAFC-BRDC, MB since 2020;

•Secretary of the Breeding and Agronomy Team of the PRCOB;

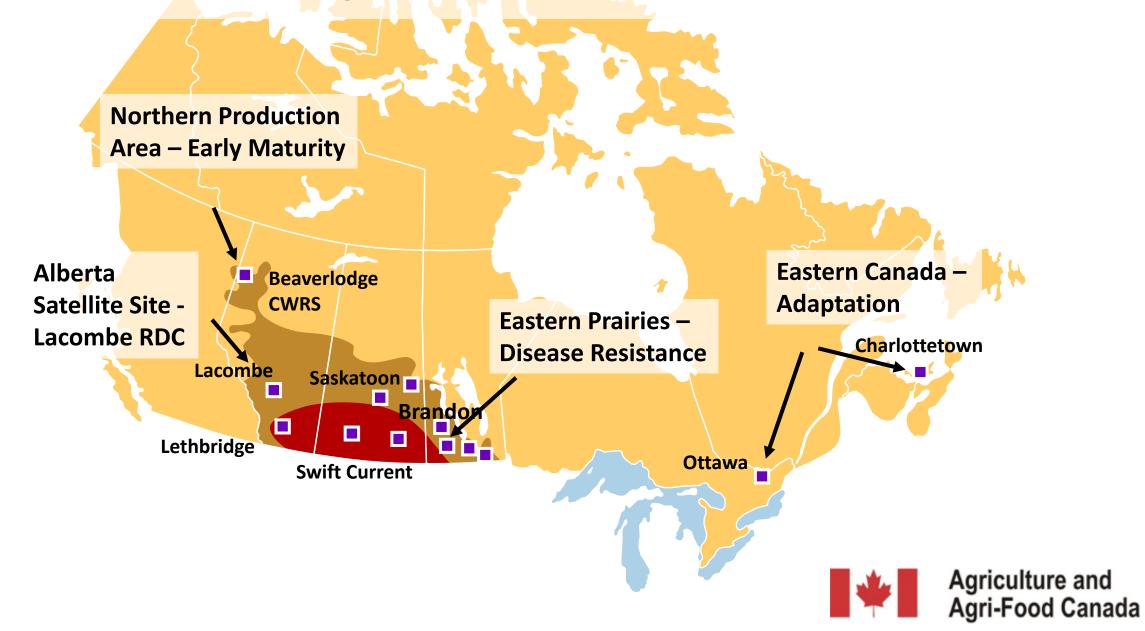
•Coordinator of the Western Cooperative Oat Registration Test (WCORT), and Alberta Regional Variety Trial for Oat

BRDC Oat Breeding Program

Goal: to develop milling oat cultivars, both for conventional and organic production, includes both the rust-prone and rust-free regions of western Canada.

Agriculture and Agri-Food Canada

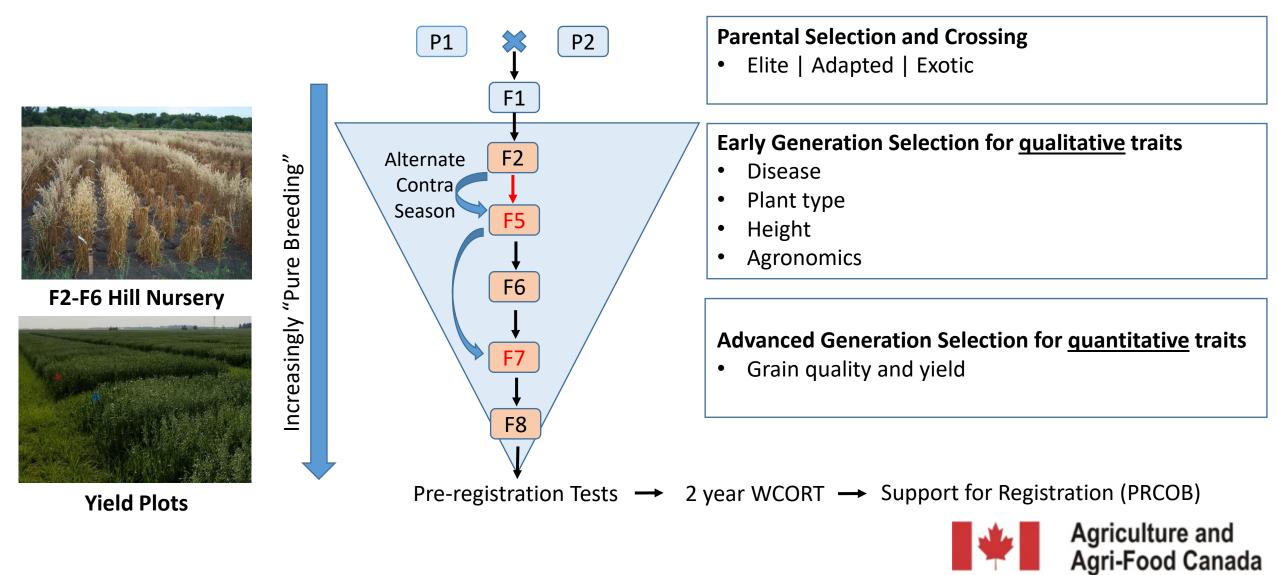
Breeding Program Objectives


- Agronomics
 - Yield 🔺
 - Maturity
 - Height 🔻
 - Lodging ▼
 - Test weight, Kernel weight 🛦
- Grain quality
 - Groat percentage 🛦
 - Beta-glucan 🛦
 - Oil 🔻
 - Protein 🛦
 - Plump/thins ▲/▼
- Disease resistance
 - Crown rust, stem rust, smut, BYDV, FHB A

BRDC Oat Yield Plots, Summer 2021

Breeding Oats for Western Canada

Oat breeding at Lacombe-RDC



Left to right: Wes Dyck, Brooke Cottyn, Kirby Nilsen

- Primary Alberta testing location
- Yield testing
- Seed increase
- Seed processing
- ~3000 plots/year

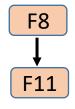
Oat Breeding Pipeline

Crossing Oats

- P1 **P2** F1 P2
- Goal: To create large segregating populations
- Recombination of alleles between parents
- Crossing oat is extremely challenging with a low success rate
- How to select parents?

Photo Credit: Paula Cormack

Speeding Up The Breeding Cycle


• Palmerston, NZ, 2022

- Alternating contraseason/Canadian nurseries allow
 2x generations per year at the early generation stages
- Selection in NZ for rust, BYDV, height, lodging

F2

F6

Advanced Generation Yield Testing

- 4+ years of yield testing
 - Preliminary yield test
 - Pre-registration test
 - Registration test (WCORT)
- Multiple locations across western Canada
- Evaluated for agronomics, disease, quality

OT8008

OT8010

Grain Quality Testing CQL

De-hulling

Sample Milling

Near-Infrared Spectrometry

- Hull percentage
- Beta-glucan
- Oil
- Protein
- Can also be done on whole grain with higher throughput but lower accuracy

Recent oat varieties from BRDC program

- OT2129 (Supported for registration by PRCOB in 2021)
- AAC Douglas (OT2122)
- AAC Kongsore (OT8006)
- AAC Oravena (OT8003)
- AAC Justice (OT2084)
- Stride (OT2069)
- Summit (OT2046)
- Leggett (OT2021)

What's New: AAC Douglas

OT2122, Oat (J. Mitchell-Fetch, 2019)

Parentage: OT7070/CS Camden

- 1. Good yield combined with early heading and earlier maturity
- 2. Good test weight and thousand kernel weight
- 3. Groat % better than test average and AC Morgan
- 4. Excellent protein and beta-glucan content, and acceptable total dietary fibre, with average oil content
- 5. Resistant to smut and MR to oat crown rust. MR to FHB.

Agriculture and Agri-Food Canada

Licensed to SeCan

AAC Douglas

Variety	Overall Station Years of Testing	Overall Yield	Yield Category (% CS Camden)		Agronomic Characteristics:						
			Low < 115 (bu/ac)	High ≥115 (bu/ac)	Maturity Rating (Days +/- CS Camden)	Test Weight (lb/bu)	TKW (g)	Height (cm)	Resistance to Lodging	Tolerance to Smuts	
MILLING											
	Va	arieties teste	ed in the 2021	trials (Yield ar	nd agronomic data only d	irectly compara	able to CS C	amden)			
CS Camden (bu/ac)		126	91	150							
CS Camden 💮	54	100	100	100	100	40	41	99	VG	I.	
AAC Douglas (9)	21	101	99	102	0	40	41	100	G	R	
AC Morgan 🐵	20	103	96	106	1	41	43	104	VG	1	
CDC Arborg 🕑	25	105	XX	105	0	41	41	108	VG	R	
CDC Dancer @	50	91	92	91	-2	41	38	107	G	R	
CDC Endure	27	106	XX	106	0	41	42	105	VG	R	

https://www.seed.ab.ca/variety-trials/cereals/

What's On It's Way: OT2129 OT2129, Oat (K.T. Nilsen/J. Mitchell-Fetch, Brandon)

Parentage: OT3076/OT8004

- Yield: 103% of Summit
- Plant height = Summit, 3.6 cm shorter than CS Camden
- Maturity: 4 days earlier than Summit
- Lodging, TWT and TKW equivalent to CS Camden
- High groat percentage and beta-glucan similar to Summit
- Consistently low scores for oat crown rust, stem rust, BYDV and low DON
- Licensed to FP Genetics

What's in the Pipeline: OT8011

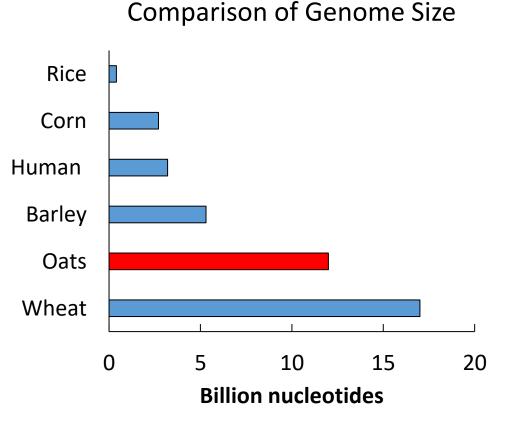
OT8011, Oat (K.T. Nilsen/J. Mitchell-Fetch, Brandon)

Parentage: OT3046/Newburg

- Organically selected on farm via Participatory Plant Breeding program
- Yield: 107% of Summit (2021)
- Plant height similar to AC Morgan
- Maturity: 2 days earlier than AC Morgan
- Lodging, TWT and TKW equivalent to AC Morgan
- Good groat percentage
- R to Smut, MR to BYDV
- MS-S to crown/stem rust

Agriculture and

Agri-Food Canada



Oat Genomics

AGCT

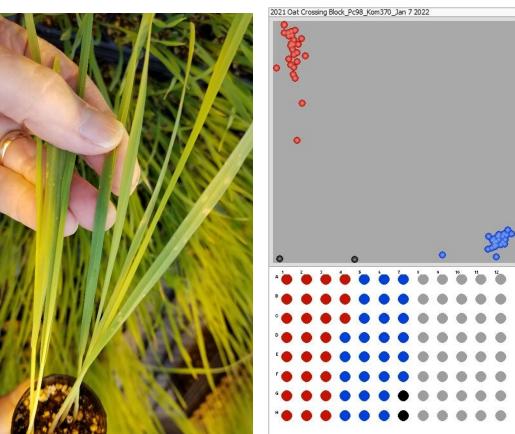
- The oat genome is <u>huge</u> and complex
- 12 billion nucleotides
- Polyploid
- 100,000 genes

- Agronomics
- Disease resistance
- Grain quality

The First Oat Genome is Now Available

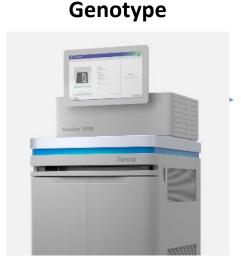
S GrainGenes A Database for Triticeae and Avena								
Home GrainGenes Tools Query Da	ata Types Resources Collaborations About	Feedback						
Search Search & Browse GrainGenes <u>Genetic Maps at GrainGenes</u>	PepsiCo OT3098 Hexaploid Oat Genome Assembly ar Release in collaboration with GrainGenes	nd Annotation						
 Submit Your Data to GrainGenes Submit Your Data to GrainGenes GrainGenes Data Formats 	Share this on: SHARE Important Announcement: Version 2 of the oat OT3098 reference assembly is currently underway. This new well as reorientation/flipping of some chromosomes. A novel orientation scheme was agreed upon by the oa was made available. The chromosome names and structure are correct, but the positions will change for a si	at community after v1 of OT3098						

PepsiCo OT3098 v2 Hexaploid O × +							- 0 ×
\leftarrow \rightarrow C \bigcirc https://wheat.pw.usda.gov/jb/?data=%	2Fggds%2Foat-ot3098v2-pepsico8	loc=chr1A%3A2704437	38270443916&tracks=refs	eq%2Cpanoat%2Cmarkers&h	ighlight=		Q ta ta Ge Gign in
Available Tracks	ScrainGenes 🐝 Genome	īrack View Help					PepsiCo 0T3098 v2 Hexaploid Oat (2021)
X filter tracks	0 50,000,000	100,000,000	150,000,000 200	000,000 250,000,000	300,000,000	350,000,000 400,000,000	450,000,000 500,000
✓ Reference Sequence 1				> Q Q Q ⊕ dr	1A 💌 chr1A:270443738270443916 (179 b)	Go 🖉 🌽	
Pepsico Oat v2 pseudomolecules	270,443,750	270,443,775	270,443,8			43,850 270,443,8	375 270,443,900
▼ Official Annotations 2	Pepsico Öat v2 pseudomolecules V	L A K M T I I G Q N D H N W P K P	H F I Y L F T	F T C L E K I Y L S L G K V			MAHTNKVVV KNFKNFK NGSHKQGGLKEFQ 0 WLTOTRWFKRISK
□ Genes ☑ Gene Set v3 with annotations	CAGCCAAAGTAGCCATGAGAGTTAA Ighoggetticatocgtactoccaaat	ATTGGCCAAAATGACCAT TAACCGGTTTTACTGGTA I P w F S w	ГСАТТТСА ТАТАТТТ СТТТТ С А СТАХА СТАТА ТАХАСАААА С	ATTTACTTCTCAGCAAAAGT AAATGAACAGAAATCCTTTCA KDKPTT	GEGGGAAATGTTTACATGATGATGTT CACCCTTTACAAAATCTACAAA HSINIIIN	A TITICACCIAA GAAACATICIACAA GC TAAA CIGGATICITICIAA GATGICG	A A T G G C T C A C A C A A A C A A G G G G G T T A A A A G A A T T C A A A T A C C G A G G G G G G C C C C C C C A A A T T C C T A A A G T C C A A A G T C A A A G T C A A A G T C A A A G T C A A A G T C A A A A A A A A A A A A A A A A A A
▼ AAFC Annotations 1	7 A L T P M L T L	N A L I V M	K M Y K N Q	N V Q R S F H	P F H K L H H K	N R L F M R C A	
GBS Markers	C G F Y A H S N F	Q G F H G N	M E Y I Q K S	K S T K L F L	T P F T K S S T -	K V · S V N · L C	H S V C V L H N L L I E F
▼ G4	Gene Set v3 with annotations						
Quadruplexes							
	GBS Markers						


https://wheat.pw.usda.gov/GG3/node/922

Marker Assisted-Breeding

- For qualitative traits
- Major genes with large effects (R genes)
- Selection in early generation breeding material
- Marker development pipelines + validation
- Parental screening
- Cost is < 20% of field screening

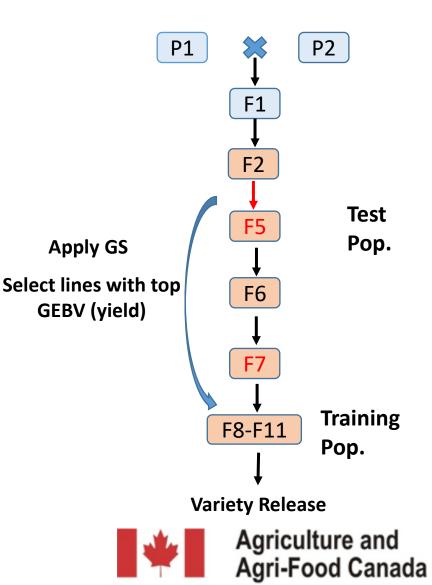


Pc98

Genomic Selection for Grain Yield

For quantitative traits:

Controlled by many genes with large environmental effects



Phenotype

Predictive Models

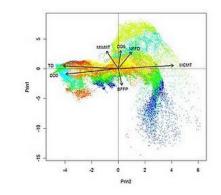
Test Population - Early Gen. Breeding Lines

Early Gen. + Advanced Gen. Breeding Lines Training Population Advanced Gen. Breeding Lines

Genomic Selection for Grain Yield

Genotype

Phenotype


Test Population - F4 Nursery - GS Tissue Sampling - BRDC Jail Field

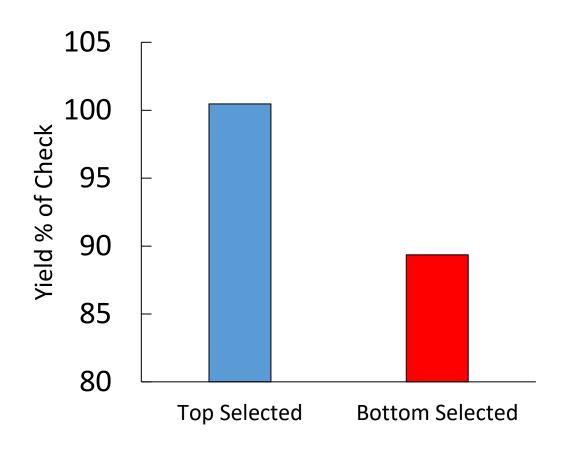
Training Population – Multiple locations across western Canada

Predictive Models

Steps

- Sample leaf tissue from test set of nursery lines (F4 generation) + training population
- 2) Extract DNA
- 3) Genotype (GBS)
- 4) Apply GS models and generate predictions
- 5) Grow selected lines in yield plots to validate

Agriculture and Agri-Food Canada


GS Validation: 2018 - Present

- Grow yield tests containing GS selected lines
- 2 locations: Brandon and Lacombe
- 80 selected entries
 - 60 "top"
 - 20 "bottom"

Collaborators:

Dr. Weikai Yan Dr. Wubishet Bekele Dr. Nick Tinker

Conclusions from GS Pilot Study

- GS was effective in predicting the yield performance of untested lines. However many were deficient in one or more other traits preventing them from becoming a variety. For example:
 - Too tall
 - Late maturing
 - Low groat percentage
 - Low plumps
- Can GS be optimized in a multi-trait selection model?

Why is Genomics Important?

- Genomics facilitates:
 - Better understanding of germplasm resources and genetic diversity
 - Selection for traits at early and advanced stages of breeding program
 - Complementary, but not replacement for traditional breeding
- Where do we go next:
 - Identification and marker development for more important genes in oat
 - GS for complex traits with emphasis on a multi-trait selection framework
 - GS for selection of superior parents for crossing

Acknowledgements

GRAIN MILLERS

Se*Can*

Canada's Seed Partner

USTGRAIN

MI

AAFC Oat Breeding Team

- Kali Stewart
- Paula Cormack
- **Ray Smith**

٠

.

٠

•

•

٠

•

- Wes Dyck
- EMERSON MILLING INC. **Brooke Cottyn**
 - Denis Green
 - Jennifer Mitchell-Fetch
 - **Organic Oat Breeding** Martin Entz
 - **Katherine Stanley** •
- Michelle Carkner FPGenetics .
 - **Dean Spaner**
 - Nature's Path **Oat Pathology**
 - Tom Fetch
 - Jim Menzies ٠
 - Xiben Wang
 - Srinivas Sura

Grain Quality

- Brenda Hoehn
- Dave Niziol
- Marta Izydorczyk

In addition to:

- **BRDC Wheat and Oat Crew**
- Santosh Kumar
- Jessica Rutkowski
- **Aaron Beattie**
- Jim Dyck
- Weikai Yan
- Nick Tinker
- Wubishet Bekele
- **Charlene Wight**
- Curt McCartney
- Ana Badea
- And many more!

AAFC Wheat and Oat Breeding Crew

Agriculture and

Agri-Food Canada

THANK YOU!