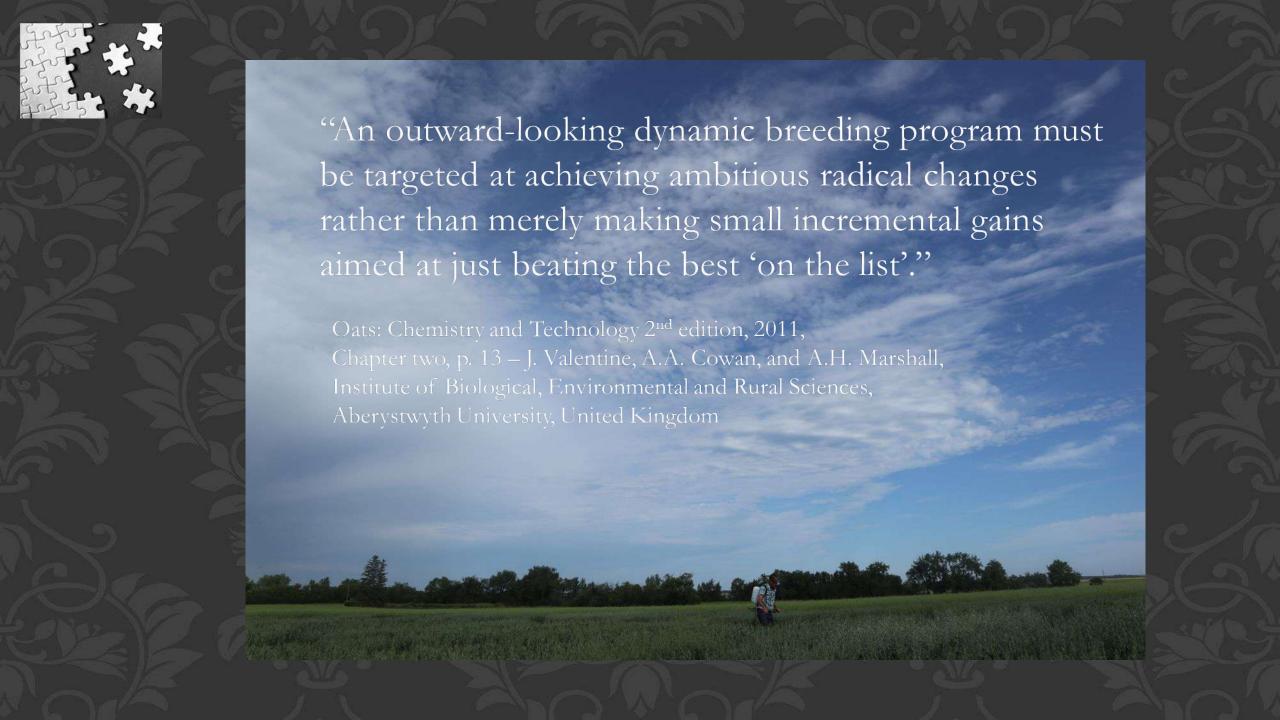


OAT ADVANTAGE oat breeding is motivated! We are supported financially in significant ways by industry and oat grower organizations.


Thanks to POGA and all members. Your vision for the oat industry and your valued support for oat breeding makes great things happen!

Thanks to RDAR and the Alberta Government for providing us with the funding to formulate a significant Alberta oat breeding.

Thanks to the Alberta Oat Growers Association for specific funding to advance our oat breeding efforts.

Thanks to Oat Industry partners such as SeCan, Richardson, General Mills, Seed Depot, Alliance Seed, and others, for generous support and encouragement as we build our oat breeding momentum in western Canada.

OAT ADVANTAGE 2024

Canadian Grain Commission canadienne des grains

Canadä

TEST WEIGHT CONVERSION CHART / TABLEAU DE CONVERSION DU POIDS SPÉCIFIQUE Oats / Avoine

g/0.5 L	kg/hL	lb/A bu	lb/W bu	g/0.5 L	kg/hL	Ib/A bu	lb/W bu
g/0.5 L	kg/hL	lb/boiss. A	lb/boiss. W	g/0.5 L	kg/hL	lb/boiss. A	lb/boiss, V
179	39.9	32.0	27.8	240	52.0	41.7	37.2
180	40.1	32.1	27.9	241	52.2	41.8	37.4
181	40.3	32.3	28.1	242	52.4	42.0	37.6
182	40.5	32.4	28.2	243	52.6	42.2	37.7
183	40.7	32.6	28.4	244	52.8	42.3	37.9
184	40.9	32.8	28.6	245	53.0	42.5	38.0
185	41.1	32.9	28.7	246	53.2	42.6	38.2
186	41.3	33.1	28.9	247	53.4	42.8	38.3
187	41.5	33.2	29.0	248	53.6	43.0	38.5
188	41.8	33.4	29.2	249	53.8	43.1	38.8
189	41.8	33.6	29.3	250	54.0	43.3	38.8
190	42.0	33.7	29.5	251	54.2	43.4	39.0
191	42.2	33.9	29.6	252	54.4	43.6	39.1
192	42.4	34.0	29.8	253	54.0	43.8	39.3
193	42.5	34.2	30.0	254	54.8	43.9	39.4
194	42.8	34.4	30.1	255	55.0	44.1	39.8
195	43.0	34.5	30.3	255	55.2	44.2	39.7
196	43.2	34.7	30.4	257	55.4	44.4	39.8
197	43.4	34.8	30.6	258	55.6	44.5	40.0
198	43.8	35.0	30.7	259	55.7	44.7	40.2
199	43.8	35.2	30.9	280	55.9	44.9	40.4
200	44.0	35.3	31.0	281	56.1	45.0	40.5
201	44.2	35.5	31.2	252	56.3	45.2	40.7
202	44.4	35.0	31.4	203	50.5	45.3	40.8
203	44.5	35.8	3-1.5	204	56.7	45.5	41.0
204	44.8	35.9	31.7	265	58.9	45.7	41.1
205	45.D	38.1	31.8	288	57.1	45.8	41.3
206	45.2	36.3	32.0	267	57.3	46.0	41.4
207	45.4	36.4	32.1	268	57.5	46.1	41.6
208	45.B	38.6	32.3	289	57.7	46.3	41.7
200	45.B	38.7	32.4	270	57.9	46.5	41.8
210	46.0	36.9	32.6	271	58.1	46.6	42.1
211	46.2	37.1	32.7	272	58.3	46.8	42.2
212	40.4	37.2	32.9	273	58.5	40.9	42.4
213	46.6	37.4	33.1	274	58.7	47.1	42.5
214	46.B	37.5	33.2	275	58.9	47.3	42.7
215	47.D	37.7	33.4	276	59.1	47.4	42.8
216	47.2	37.9	33.5	277	59.3	47.6	43.0
217	47.4	38.0	33.7	278	59.5	47.7	43.1
218	47.8	38.2	33.8	279	59.7	47.9	43.3
219	47.B	38.3	34.0	280	59.9	48.1	43.5
220	48.0	38.5	34.1	281	60.1	48.2	43.6
221	48.2	38.7	34.3	282	60.3	48.4	43.8
222	48.4	38.8	34.5	283	00.5	48.5	43.9
223	48.5	39.0	34.6	284	80.7	48.7	44.1
224	48.8	39.1	34.8	285	80.9	48.8	44.2
228	49.D	39.3	34.9	286	61.1	40.0	44.4
226	49.2	39.5	35.1	287	81.3	49.2	44.5
227	49.4 49.8	39.6	35.2 35.4	288 289	81.5	49.3 49.5	44.7 44.9
		39.8			61.7	49.5	
229	49.8 50.0	40.1	35.5 35.7	290 291	81.9	49.8	45.0 45.2
230		40.1			62.1		
231	50.2 50.4	40.2 40.4	35.9 36.0	292 293	62.3	50.0 50.1	45.3 45.5
232	50.4	40.4	38.0	293	82.5	50.1	45.8
		40.6 40.7					
234	50.8		36.3	295	62.9	50.4	45.8
235	51.0	40.9	36.5	296	63.1	50.6	45.9
236	51.2	41.0	35.6	207	63.3	50.8	45.1
237	51.4	41.2	38.8	298	63.5	50.9	48.2
238	51.8	41.4	38.9	299	63.7	51.1	48.4
239	51.8	41.5	37.1	300	63.9	51.2	48.8

August 2005 Août 2006

Commission

Canadian Grain Commission canadienne des grains

Canadä'

TEST WEIGHT CONVERSION CHART / TABLEAU DE CONVERSION DU POIDS SPÉCIFIQUE

Oats / Avoine

The second second									
A	lb/W bu lb/boiss. W	g/0.5 L g/0,5 L	kg/hL kg/hL	lb/A bu lb/boiss. A	lb/W bu lb/boiss. W				
	27.8	240	52.0	41.7	37.2				
	1 22	77.5	V ALGORIA		Jan				
TYP									
S	WWW.	NAME OF THE PERSON OF THE PERS	100	MANA M	MANAGE AND STREET				
-	2611 (0	071108	6100 V)	(41) 1	46.6				
-	38.2	244	62.7	50.3	45.6				
1	36.3	295	62.9	50.4	45.0				
1	36.5	296	63.4	50.6	45.9				
	80.0	207	08.8	En R	40.1				
	SIL S	J. LIM	108.77	60 0	201.20				
1000	201.0	24100	108 /	6.1 1	401.4				
100	37.1	200	63.9	51.2	46.6				

Ab0t 2006

EXPORT READY ALBERTA oats...?

QAT EXPORTS BY DESTINATION - Q1

	2019/20	2020/21	2021/22	2022/23	2023/24
us	478,255	491,818	457,460	412,860	391,952
Chile	11.0/2.2	100,177			50,885
Mexico	36,171	69,314	28,310	79	49,139
Peru	9,843	11,504	8,220		17,600
Japan	8,538	8,208	8,848	1,503	8,523
S Korea	2,028	1,402	3,164	1,082	4,763
Other	11,703	22,815	3,362	338	972
Total	546,539	705,237	509,364	415,862	523,834

Down to the US, up everywhere else

Opportunities

- · Peru
- India
- China

WHAT DOES TAKE??

RDAR

Alberta – GRO & Oat Advantage

Table 1.4

Summary of grain quality data for second year entries averaged over locations from years (2021 and 2022). Source: WCORT Feb 2023 report

ENTRY	GROAT *PROTEIN 2021 (%db)	GROAT PROTEIN 2022 (%db)	GROAT PROTEIN 2yr mean	GROAT ** OIL 2021 (%db)	GROAT OIL 2022 (%db)	GROAT OIL 2yr mean
AC Morgan	17.2	15.6	16.4	6.5	5.9	6.2
Summit	18.1	16.0	17.1	7.5	7.1	7.3
CS Camden	19.3	17.1	18.2	7.4	7.0	7.2
OT6038	22.0	19.8	20.9	6.8	7.3	7.0

^{*}Data supplied by M. Izydorczyk, Grain Research Laboratory, Canadian Grain Commission.

Wholemeal samples were analyzed by Combustion Nitrogen Analysis

Table 1.5

Summary of grain quality data for second year entries averaged over locations from years (2021 and 2022).

Source: WCORT Feb 2023 report

ENTRY	*MEGAZYME β- Glucan 2021 (%db)	MEGAZYME β- Glucan 2022 (%db)	β-Glucan 2- Year Mean (%db)	**TDF 2021 (%db)	TDF 2022 (%db)
AC Morgan	4.4	4.3	4.3		9.2
Summit	4.8	4.9	4.9		10.2
CS Camden	5.2	5.5	5.3		10.4
OT6038	5.0	5.5	5.2	N/A	10.8

^{*}Data supplied by M. Izydorczyk, Grain Research Laboratory, Canadian Grain Commission. Standard analytical procedures were used to quantify beta-glucan

^{**} Data supplied by M. Izydorczyk, Grain Research Laboratory, Canadian Grain Commission. Wholemeal samples were analyzed by standard procedures

^{**}Data supplied by M. Izydorczyk, Grain Research Laboratory, Canadian Grain Commission. Standard analytical procedures were used to quantify total dietary fibre

Table 1.2

Yield (Kg/Ha) means for second year entries by soil climate zones averaged over two years (2021 and 2022).

Source: WCORT March 2023 report

ENTRY	ZONE 1 BLACK	ZONE 2 BLACK & GREY WOODED (SK & AB)	ZONE 3 BROWN		
	(MB & SK)	(SK & AD)	(SK)	OVERALL MEAN 2021	OVERALL MEAN 2022
AC Morgan	5964.3	63 4 8.8	3790.6	4835.4	6670.8
Summit	5124.0	5399.2	3269.8	3824.0	5975.9
CS Camden	6036.1	5757.4	3840.8	4638.2	6524.3
OT6038	4844.4	4881.5	2925.0	3403.2	5811.8

Table 1.3

Summary of grain quality data for second year entries averaged over locations and years (2021 and 2022). Source: WCORT Feb 2023 report

	TWT (Kg/Hl)	MKW (G)	PLUMP ² (%)) THINS ^y	GROAT ^x
ENTRY				(%)	(%)
AC Morgan	56.1	38.8	84.0	2.9	71.6
Summit	58.2	36.7	83.5	4.2	75.8
CS Camden	55.1	38.0	82.2	3.5	71.1
OT6038	55.4	46.0	96.9	0.8	70.9

^ZPercent plump based on portion of 50 gram sample remaining on top of 5 $\frac{1}{2}$ /64 x $\frac{3}{4}$ " sieve.

Percent thin was determined by the portion of 50 gram sample passing through 5/64 x $\frac{3}{4}$ " sieve.

^XPercent groat determined on a 50 gram sample using a Codema dehuller.

Table 1.0
Summary of agronomic data for second year entries averaged over locations and years (2021 and 2022). Source:
WCORT March 2023 report

	YIELD	HEADING	MATURITY	HEIGHT	(CM)	LODGING	(1-
ENTRY	(Kg/Ha)	(Days)	(Days)			9)	
AC Morgan	5753.1	55.4	89.1	92.0		2.2	
Summit	4900.0	52.7	87.8	84.8		3.2	
CS Camden	5581.3	53.2	85.3	87.2		2.0	
OT6038	4607.5	54.3	86.6	88.	9	2.5	

Table 1.1

Yield (Kg/Ha) means for second year entries from selected locations (2021 and 2022). Source: WCORT March
2023 report

ENTRY	ZONE 1 2022 BRA*	ZONE 2 2022 LAC*	ZONE 4 2021 LET*	ZONE 4 2022 LET*	ZONE 4 Mean
AC Morgan	7303.7	10873.3	8417.5	8461.0	8439.3
Summit	6967.2	9844.1	6380.7	7727.4	7054.1
CS Camden	7111.5	10590.4	6951.5	8122.4	7537.0
OT6038	8216.3	9849.4	6243.1	8207.5	7225.3

^{*}Brandon MB, Lacombe AB, Lethbridge AB

OT6038 - Request For Support for Registration

2023 Prairie Recommending Committee for Oat and Barley

March 1st and 2nd Banff Centre, Banff, Alberta. PGDC Meetings.

Proposer: **Jm D yck** - Oat Breeder

Oat Advantage

Vesper Sparrow Prairie Research Inc.

Saskatoon, Saskatchewan

291-9978

@gmail.com

1 Crop: Oat

oring milling oat

- 2 Test Numbers: 0
- ③ Primary data source: 2021 &
- (4) Pedigree: OT6009 x OT9006 (in house
- S Area of adaptation: targeted for specific grown production.

vistration Trial (WCORT).

table for irrigated

Description: OT6038 is an awnless, yellow hulled, later maturing, high acceptable grain yield in certain well managed situations. OT6038 has exceptistance. The quite high protein content of OT6038, plus high beta-glucan level, in combination with true* high % plump is an advantageous pairing for ingredient extraction and high milling value.

PHASE I

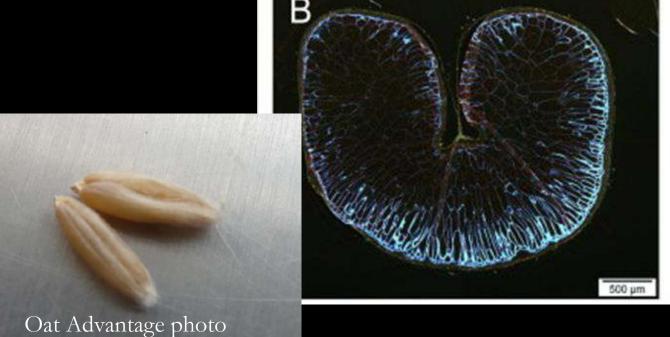
2021 Westlock, SeCan Oat Advantage initiative


2022 Westlock – RDAR

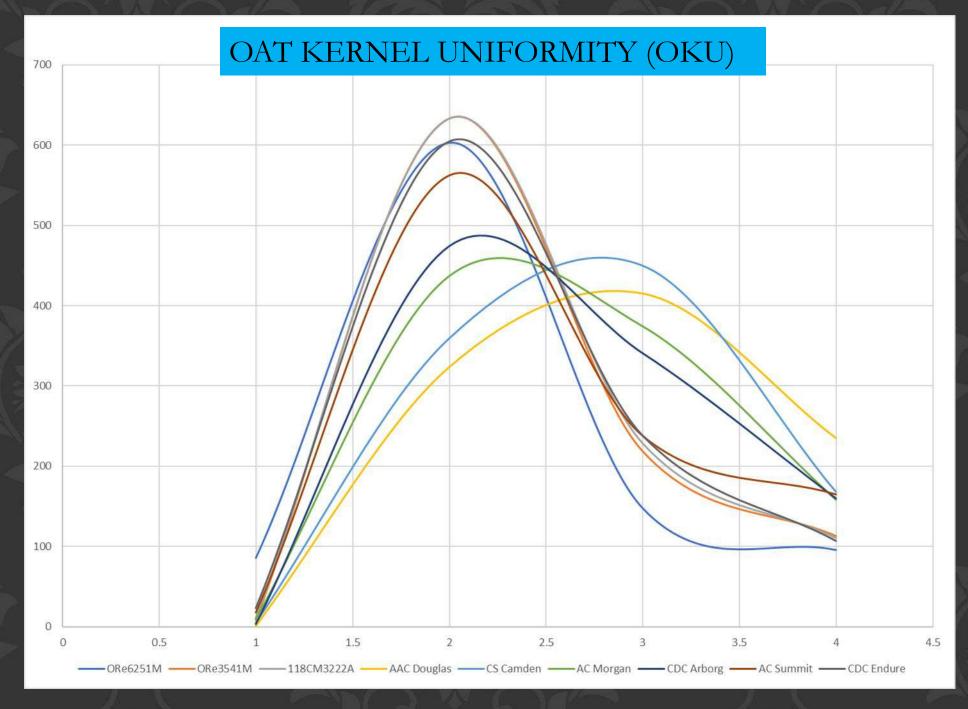
PHASE II

2023 Westlock, Lakeland – RDAR

WST 1000 kernel wt			CDT 1000 kernel wt		
%A/B gain series 2+3	GT pair	A/B entry #	%A/B gain series 2+3	GT pair	A/B entry #
110.6	Pair 7	3/3	110.6	Pair 7	3/3
108.6	Pair 4	1/2	109.5	Pair 15	1/1
108.3	Pair 1	2/3	107.3	Pair 4	1/2
108.2	Pair 8	3/3	107.1	Pair 5	2/2
107.1	Pair 23	1/1	105.5	Pair 1	2/3
102.3	Pair 5	2/2	104.8	Pair 19	1/1
102.3	Pair 15	1/1	103.8	Pair 21	2/2
102.3	Pair 19	1/1	103.4	Pair 6	2/2
98.9	Pair 6	2/2	102.3	Pair 12	1/1
97.8	Pair 22	2/2	100.8	Pair 8	3/3
97.7	Pair 12	1/1	100.0	Pair 9	3/3
97.6	Pair 14	1/1	97.6	Pair 23	1/1
96.8	Pair 9	3/3	96.7	Pair 10	2/2
91.0	Pair 21	2/2	93.0	Pair 22	2/2
90.9	Pair 20	1/1	90.5	Pair 14	1/1
86.3	Pair 10	2/2	86.0	Pair 20	1/1

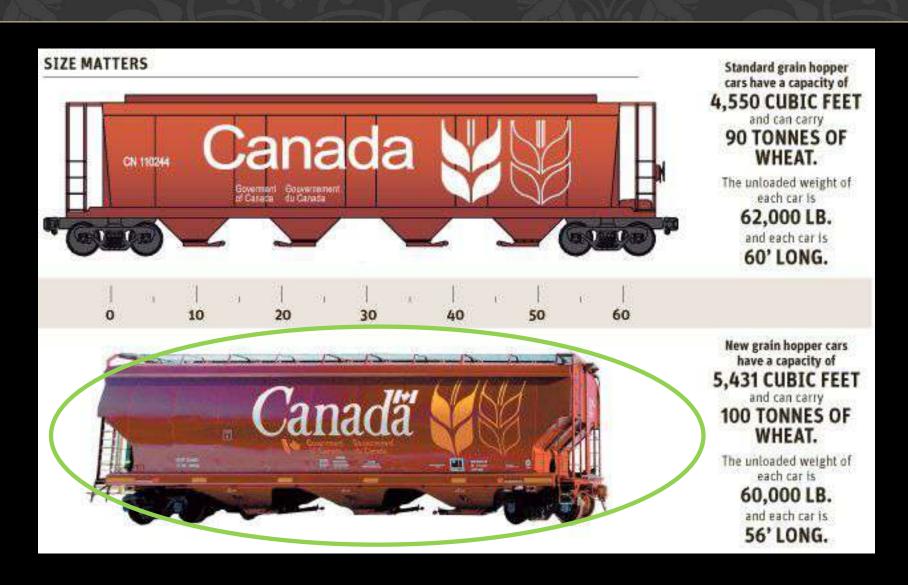


WHAT MORE COULD WE WORK ON ... WHAT IS AMBITIOUS ...


We are also wondering about how the unused spaces in or on or around the oat groat can be filled...

Can we increase the oat groat density to help create a 55lb/bu oat variety? Can we find oat kernels that are a better shape?

Internet photo, oat



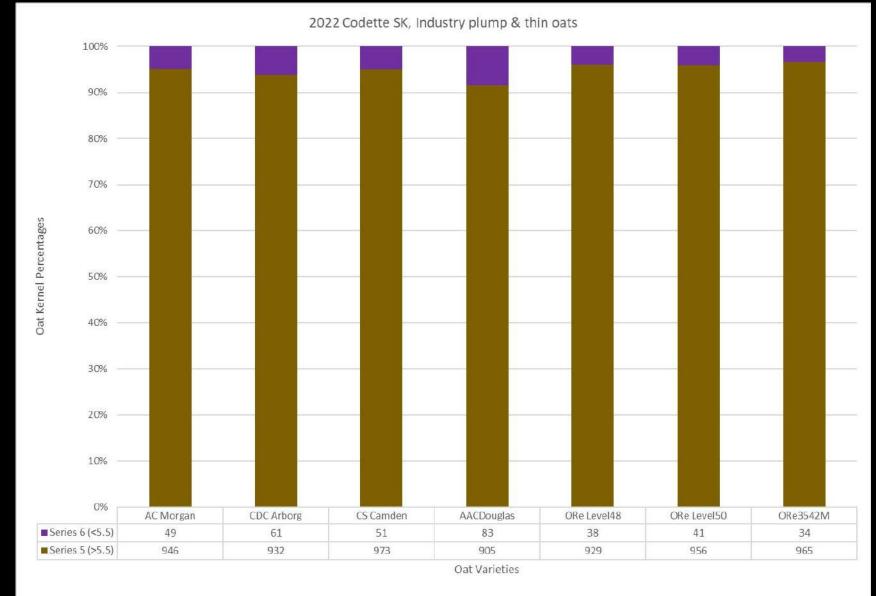
DESIGN EFFICIENCIES

We began to see that we could have a role in Oat Design Efficiencies.

Could we do, like the railways and their redesigned grain railcars, redesign oat varieties by focusing on plants that gave the 'Right' profiles of kernel fractions?

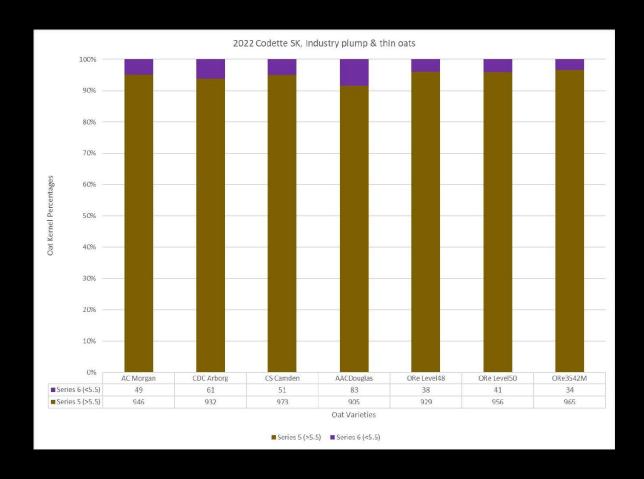
Most millers and growers of oats rely on Test Weight (Kg/HI) to evaluate the initial quality of oat grain in a truckload. While generally useful, Test Weight can hide deficiencies of a poor quality oat variety. Very small kernels fill in the gaps between larger kernels and create the look of a dense, valuable grain load.

PLUMPS & THINS


From earlier years (1994 and on) being involved with the oat registration process, the work on oats for grain size was taken to be a simple matter of **Plump' and 'Thin'.**

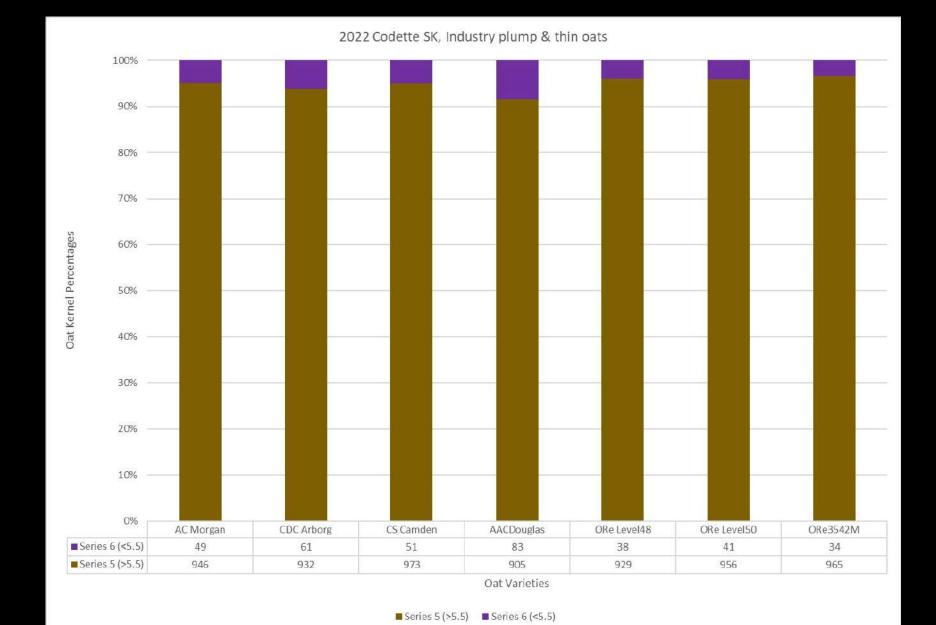
The same...??

■ Series 5 (>5.5) ■ Series 6 (<5.5)

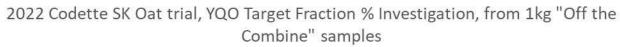

FRACTIONS OF PLUMP OATS

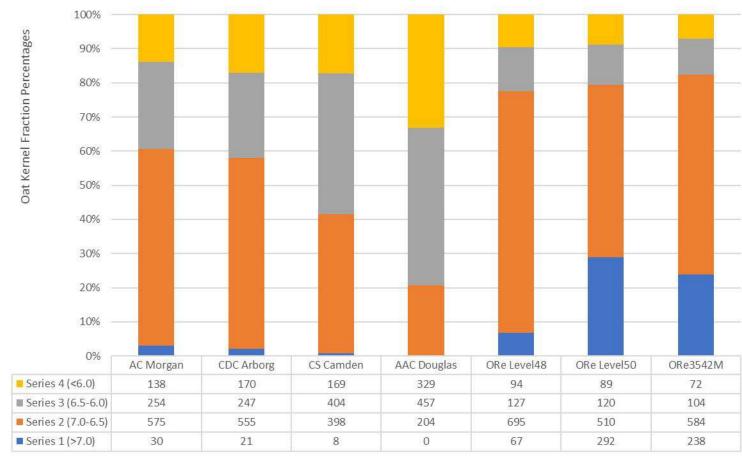
Then along came this machine! We saw the need for one of these years ago so that we could dispense with hand sieving everything!

And we also realized that this view of oat plumps and thins is all that the Oat mills get to see as the Grain trucks are unloaded at the Elevator or the Mill.

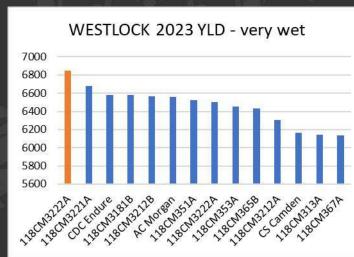

Once co-mingled no one knows any further the true potential of profitability or loss of the load of oats of a specific oat variety to the mill.

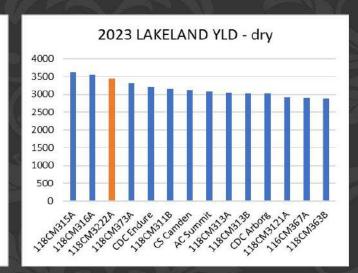
TIME TO LOOK AT OAT SAMPLES

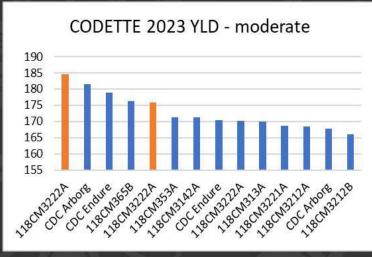


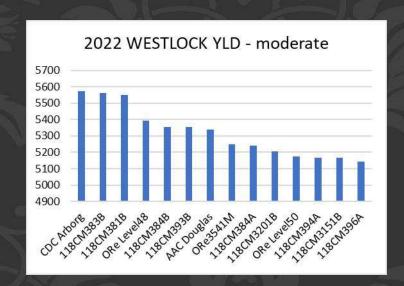

So we realized... that this view of thins and plumps...

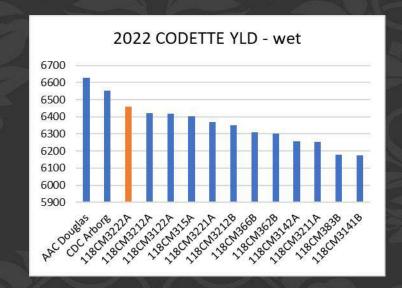
... does
not tell the
story like
this view.

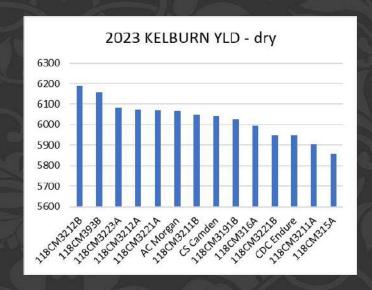





OAT VARIETIES







2023 CDT [Codette Sk] again, plus experimental lines from CDT and Westlock [WST]

Oat Kernel Fraction Percentages

118CM3222A is a top yield line above top check varieties.

CDT

DRY WET

■ Series1 ■ Series2 ■ Series3 ■ Series4

IETIES

OAT GROWER COMMENTS

We are beginning to collect more comments from growers to show that Yield and Quality can and do profitably exist together in our oat varieties

Rick Mueller, seed grower at Barrhead Alberta says that they sell both Morgan and ORe3542M oat varieties. Comparable fields for the two yield 200bu per acre each. At the same time it is a "Night and Day" difference growing 42M. "ORe3542M is way easier to combine" says Rick's son Adam. A lower cylinder speed is required and there are noticeably fewer green leaves with ORe3542M.

- Rick's Pedigreed Seed, Barrhead AB 2023

"Hi there, I was just talking with Garry, his 41M screenings made 'milling grade' in town. In a year when guys are struggling to make milling grade out of their bin, I made it with my 41M screenings!!!!" – Brad, re 2021

"Hi jim , we are well into our oat harvest, next year it will be all 35-42m. Really happy with that variety. One half section was yielding 150 bushels an acre . Not bad for a severe drought. This was on zero till. It did get a bit more rain than some other fields . I noticed really nice plump oat seeds...." – James, August 4th, 2021

PHASE III 2023-2024 Winter increase in New Zealand 2024 Westlock, Lakeland, +2 – RDAR

From
1000
2024 Challenge to
growers...

100 acres

From

1000 Growers....

2024 Challenge

For partnership with

Oat Advantage

EXPORT READY ALBERTA oats...?

QAT EXPORTS BY DESTINATION - Q1

	2019/20	2020/21	2021/22	2022/23	2023/24
us	478,255	491,818	457,460	412,860	391,952
Chile	11.0/2.2	100,177			50,885
Mexico	36,171	69,314	28,310	79	49,139
Peru	9,843	11,504	8,220		17,600
Japan	8,538	8,208	8,848	1,503	8,523
S Korea	2,028	1,402	3,164	1,082	4,763
Other	11,703	22,815	3,362	338	972
Total	546,539	705,237	509,364	415,862	523,834

Down to the US, up everywhere else

Opportunities

- · Peru
- India
- China

WHAT DOES TAKE??

RDAR

Alberta – GRO & Oat Advantage

